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N SUMMARY

A new family of Fourier-based estimators of the parameters
of the multivariate Gaussian distribution is presented. The estimators
are equivalent to parametric density estimators. Three distinct
estimators arise, each of which 1is robust and reduces to the maximum
likelihood estimator as a special case. By varying the window width
of a parametric density estimator, a set of diagnostics which are

useful in problems of outlier detection and clustering are obtained.

An example, using a trivariate data set, 1s given. X o, .
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1. INTRODUCTION

In fundamental papers Rosenblatt (1956), Parzen (1962), and
Watson and Leadbetter (1963) considered the problem of estimating a
density. While the approach used by these authors is non-parametric,
we shall be concerned with density estimation in a parametric frame-
work. In this framework the form of the density is assumed to be known
apart from parameters which completely define the density. We shall
exclusively consider the problem of estimating the parameters of the
p-variate normal density

1

£(x) = 2rD|~ 1

exp(-i(x - W) D N (x - W), (1.1

-~ -~

H

where U 1s the mean vector and D 1is the covariance or dispersion

-~

matrix.

The characteristic function corresponding to (1.1l) is given

by
D(g) = exp(igru -3 grgg) (1.2)

where u = (ul’ Uyy vees u“)T is a column vector of real numbers. If
t

-~

Xyn Koy eeey X is a random sample from (l1.l), the sample characteris-

-~

tic function

1 T
$ (u) = n z exp(iu x,) (1.3)
n -~ ~ -]
j=1
is unblased for (1. ) for every fixed u . Information concerning .

-~ ~

and D can be extracted from ;n(u) by methods similar to those of

Paulson and Nicklin (1983). In this case the estimators of . and D
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would be determined from score functions for U and D developed by

~

differentiating

o
J [o(w) - ¢n(g)|2 exp(-n”u'Ku) du (1.4)
R
P

with respect to U and D, setting 5 = 9 and then setting the re-
sulting expressions to zero. The expression (l.4) is therefore not a
bona fide objective function.

An alternate approach is to proceed as follows. Let

S T -
v (u) = n 1 exp(iu'D *(x, - v)) . (1.5)
nts i=1 ~~ &) =

Whereas on(u) is a statistic, vn(g) is not, but
o . 1 T
E(«n(g)) = Y(u) = exP(-ig 5) . (1.6)

The parameters ~ and D of (1.5) may be estimated by making wn(g)
and W(g) match up in some sense., There are many ways in which this
may be done, but we shall present only that which has been found to be
most theoretically as well as computationally convenient and useful.
Computational convenience is not a matter of small importance, it is
in fact the overriding consideration when the dimension p becomes
large: an estimator is effectively worthless if it cannot be calculated.
We shall ultimately >ttain three pailrs oI estimators of
(E’ Q) » all arising from consideration of matching up Jn(g) with
W(E) « All pairs of estimatcrs will be useful fa the identification of
potential outliers, in exploratory data analysis, and in clustering

problems. Furthermore, all estimators will te qualitatively robust in

A TN T T AT



the sense that their multidimensional influence functions will be
bounded and re-descendant; all will reduce to familiar estimators as

a special case.
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4
# 2. DERIVATION OF THE ESTIMATORS BASED ON Un(u)
}
Define the function
i 2 2T
Q (4, D) = lWu) - v (u)| exp(-m“u u)du . (2.1)
myn ~’ ~ R < n'~ ~ <<
P
The function Qm n(E’ D) 1is a bona fide objective function for . and
1
D when 0 <m <® , The integrand of equation (2.l) can be rewritten
in terms of the residuals in u ,
20T -1 ¢ T -4 2T
R(u) = exp(-%(1l + @ )uu) - n ~ ; exp(iu' D “(x, - u) - 'm"u'u) (2.2)
as
* 2
Qu s D) = | R(w) R (Wdu = IR | dy ,
’ R-P R
P
*
where R (u) denotes the complex conjugate of R(u) .
‘ Estimators which result from minimizing (2.1) are thus those

which minimize the integrated squared moduli of residuals defined by the

Fourier transforms in (2.2).

Explicit integration of (2.1) yields

: expf—(imz)-l(yj - v ) e, - yk)?
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5
3
*
20
where .
D )
Zj z (§j z

Equating the partial derivatives of (2.3) with respect to u and D

(Dwyer, 1967) to zero gives the estimating equations for u and D as,

~

respectively
-1 “4p-1 ~ - - 2 - -
n Tr‘p(m2 +y) P 1 . D l(xj - Lyexpi-(4m~ + 2) l(x - u)TD l(xj - =0,
h|
(2.4)
and
P -2, 2 -hLp=l ~ ~ - T.-1
TP n" (m7) :p-l L . D 1(x. - xk)(x. -~ x)D
iy ~] - ~] ~k° o<
j k
: 2. -1 T -1
{= (¢ < - -
exp ~(4 m") (’fj %) D (gj x )}
- ) ~tpel -~ _- -
+ ln l(m" + i) -l L D l(xj - '_)(xj - u)TD 1
j
N exp -~ (4 m2 + 2)-l(xj - ;)T D-l(xj - ?)}] =0 . (2.5)
From (2.4) and (2.5) we find that the estimators for . and D , :l
and §1 , say, satisfy the implicit equations
Y ox v
).‘ ~j lim
.= . ’ (2.6)
L 7n
J
and
A =B ’ (2.7)
. b A
=
W
[
]
+3
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where
<kp=] ~ T
A= (m2 + %) -1 Lo(x, = L) (e = L)
~ ~] - -] -
3
. 2 - - .
£ exp.=(in” + 2) l(xj - —)TD l(:<J, - s, (2.8)
and
- “ep=l -~ -
B = (2n) l(mz) @ oo (x, - %) (x, - x.)r
< - - Y] ~KYS <K
] K
- 2.-1 T.-1 N
< exp’-(4 - x (x, - x,)}
x exp.-(im7) (ﬁj x) D X5 5k)' , 2.9
and
Vim m e+ 7y - T 0Ty - w0 (2.10)
. . T.-1
The generalized distances (§j - .)D (xj - -) and
(xj - xk)r D-l(x, - xk) constitute an essential component of the esti-

mation process defined by (2.6)-(2.10). These distances have been used
in a variety of contexts including clustering (:nanadesikan, 1977, Ch,
4), identification of potential outliers (Barnett and Lewis, 1978, Ch.
6; Cnanadesixan and Rettenring, 1972: Rohlf, 1973), and regression
diagnostics (Belsley, Kuh, and Welsch, 1980, Ch. 2). Because the diag-

nostic capability of these generalized distances is embodied in the

A
Lt
estimation process itself, we have in a real sense combined the processes PN
s
of estimation and criticism. The word criticism is used here in the NG
\i\i

. - . ~
sense of Daniel (1959), Box (1979, p. 2), and Paulson and Nicklin (1383). :;,:
N
Criticism 1is the process of assessing the internil -~ nsiszan-w 7 tne i*ii
data and the tentative model, in this case that the x. are indepen- T
- 2
dently distributed according to a p-variate Gauss:ian law. .inj
v J'
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As m + ® , the estimator ‘.;11 >n ) xj , the ordinary .
sample mean vector. The covariance matrix D 1s not strictly estimable :“
- 1) f
through (2.7) when m + ® since we end up with, at ':11 = L: , the "\
o
identity N
Lo
1 N ~ T 1 T i‘.
c , _ 5 -+t T _ _ ‘.'.-
n- 1 L Gy ROy -u) sy Ty L Oy oy ) 33
J ik ':\
(2.11) £4
which does not explicitly involve D . Either side of (2.11) may be ::.
~ ~
| o~
} used as an estimator for D on the truth of the independent, identical, b
| L ]
p-variate normality of the x, . The estimators Hy and Dl are not tﬁ
m-estimators because of their explicit dependence on the pairwise -.
s
“~
generalized distances. The comment that either side of (2.11) may be _’
used to produce estimators for D leads us to presently develop two ::‘.
different estimators for D . "
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3. SIMPLIFIED ESTIMATORS OF D

A

D1 is numerically difficult to extract from

The estimator

(2.7), especially if p 1is large. Fixed point and Newton-Raphson

~

algorithms for producing Dl have been developed and found to work well

except for computational expense. However, the intriguing identity

(2.7) at the solution “1 and Dl suggest two alternative estimators

The first is based on A of (2.8). The joint estimators for

for

[ =/

4 and D are obtained by determining the value K in

- < 2
T T 1 ; 2 -1 T -1 3
S, =) K (x, - u)(x., - u - Drexp ' -(4m” + 2 “(x, - .)D “(x., - u):!
Sy ™ L Ky -k =) - Diexp Xy 72D ok
J
(3.1)
which makes E(S,) = 0 . Direct computation gives
2 + 2m
K2 = — . (3.2)
1 + 2m

Thus the joint estimators for v+ and D , :2 and 6, , satisfy the

-~

inplicit equations

yom dee—— (3.3)
- L vljm
J
\ Lo (x = ) (e, = L) vy,
2 +2n°  § T G
D = 5 " , (3.9
- 1 + 2m” L "2im
J
with
. > -1 T .
vy, = exp:-(nT ~ 2 Tix - )0 Tix, - o, (3.3)

2im pooT T
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Another pair of estimators for u and D may be based on

B of the right hand side of equation (2.8). We require the constant

K3 in
iy T 2,-1 T -1 .
337 44 K0y - ) (g - ) - D explin) Ty - 0 0y - 0
jFk
(3.6)

which makes E(S3) =0 . Since xj - X

X, » J Fk, is Np(g, 2D) we

find by direct computation that

1

s——_—l)-(l'f'?) {(n°l)+(l+l

2
m

1
P} (3.7)

3 2(n

Thus the joint estimators for u and D , ﬁ3 and 63 , satisfy the
implicit equations
Z#E %5 V3jkm
u o= . (3.8)
i z z V3ikm
jék
- T
Lo (xy - AR TR R S YD
D = K3 2k p— , (3.9)
LV
4k 3jkm
with
PR T -1 .
= x c={ L - P ; .
Viikm = %P n7) (fj Ek) D (fJ fk) (3.10)
Both estimators b, and ﬁj are computationally more
attractive than 61 All of 6j , J =1, 2, 3, are positive definite
with probability one for = > 0 whenever n > p although all may be

ANT I N T WYY

“» W
.

A e N

»
P
%%

“y 1 "w
Lol
S}

g

PR A
oS,
' ls s

,l

ah ANy
Jo

ne,




e WIS

- T TR TN TS T IR T T TR R YR RN TENETFENEVI TL NP PR TN AL ONNUNTI I LUMT S "0 70 8L C UL LWL kol

10

algorithmically singular. The estimator §2 is an M estimator for

~

and 93

the pairwise generalized distances. All of Dj , j =1, 2, 3 are

9 but §l are not because of their explicit dependence on
affine invariant. The forms of the equations (2.7), (3.1), and (3.6)
imply that the influence of a single observation is bounded and re-
descendent so that the estimators are qualitatively robust. The weights
vljm , vij , and v3jm s, 0 <m <= | provide useful diagnostics for
assessing the character of the data vis-a-vis the normality assumption.
These weights are also useful in identifying potential outliers or data
which require further study. Overall patterns in the final weights are
also useful in this regard. These points are {llustrated in a subse-
quent example.

The asymptotic efficiency of the estimators gj and éj
relative to the maximum likelihood estimators is an increasing function
of m and approaches 1l as = + += . The efficiencies of é, and é,
among the three pairs of estimators are easiest to obtain.

The efficiency of the jth component of {2 , sav :ﬂ‘ s

relative to the sample mean {s easily determineld anl is ziven b

, 2 -oup*2)
et = (1 v 7= ) : (3.11)

[od
23 1+ 2¢

- 2
the efficiency of the jth diagonal component of D, , say d:j , rela-
tive to the usual maximum likelihood estimator is onlvy a little more

difficult to obtain and it is ziven by

al
-

1+ 2¢

-1 .
2 - . ie c ) -
eff(d;,) (1 —— ) (1 . , (3.12)

A}

where c = (1 + 22”71
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11

Figure 1 provides some of these efficiencies as a function

of m and p . The efficiencies associated with Ky <§l has the
same asymptotic efficiency as ﬁz ) and 53 are approximately
those of SZ and 62 . A small Monte Carlo studv suggests that the

efficiencies related to §l are slightly higher than those of @2

The efficiencies of the off-diagonal element of § relative
to the maximum likelihood estimates of covariances are very nearly equal
to those of the diagonal elements.

The contours of all influence functions of the estimators
gj ’ §j at the multivariate normal are all closed and bounded. This
closedness property implies that estimation may be combined with
clustering or may be used as a clustering algorithm or used to evaluate

the results of a clustering algorithm. The clustering capability asso-

clated with estimation of 4 and D allows for an identification of

potential outliers in multivariate normal data.
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4, PARAMETRIC DENSITY ESTIMATION

and D

The estimators %

31 of Section 2 are equivalent to
those derived from the following parametric density estimation consid-
erations. The expression R(u) of (2.2) represents a difference of

characteristic functions whose inverse is
r(x) = g(x) - gn(x) (4.1)

where g(x) 1s the spherical normal distribution with

- . 2 . )
g0 = 127(1 + 0T Texpi-l(1 + nd) kT (4.2)
and gn(x) is an estimator of g(x) with

-1 -~ . 2. . 7 - .
g (x) =n 1 L rmTl Zaxp -(2m7) lz?z,' . (4.3)

n ~ <373

J
-l

zj = (x -D (xj -u)) . (4.4)

The matrix I 1is the pxp 1identity matrix. The expression gn(x) is

-~

unbiased for g(x) when the xj are p-variate GCaussian. By the multi-
~ < o
dimensional version of Parseval's theorenm

i

1

>
7

L | r&

Q, (u, D) = j RGw Zau = (297 1 RP(x)dx (4.5)

ol D= Rl ‘x x) dx
P P

'\"-/
e Y %
LA

D
5

.

7
»

and 6

, 2re those arrived at from

Accordingly, the estimators :1

minimizing the integrated squared residual in x and may be accurately

termed parametric density estimators.

The robustness characteristics of the estimators 1 ind D

are easily seen from working with (4.5), e.g., 2differentiation of (4.5)

\'\"\"b" .‘a FAC N P e _.. PLIN SR g ". ) .,“'- "p ;.- » '_.; -- . '...'..’-'.n.‘ " et ‘_.. o e .\_- i

> N SIS WS A1




with respect to u gives

) gn(f)
fR ——E-E—- (g(f) - gn(f))df =0

P
From this equation we readily deduce for O < m < ® that the marginal
contribution of X, » s3ay, to the estimate of u depends on all the
fj’ not just X, » as well as the assumed p-variate Gaussian density,
that it is bounded, and that it is redescendent as ]ixn” + o ., The
function 8n(§) is similar to a Parzen kernel density estimator; the
form of the kernel is determined by the function exp(—ngrg) of
(2.1). The advantage to the choice of the Gaussian kernel is that it
leads to convenient computational expressions. Choice of functions
[w(g)iz other than exp(-ngrg) generally leads to kernels which
do not permit closed form integration of (4.5) and thus make for in-
tractable numerics when p > 2 . Intractable numerics result from the
need to compute integrals by numerical methods.

Indeed, the potential for application of parametric density
estimation procedures is bleak if integrals of the form (2.1) or (4.5) .
for a non-Gaussian p-variate density f(f) cannot be evaluated in
closed form. The reason is simple: high order numerical integration AR

for p large is not viable even for today's computers.
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5. AN EXAMPLE AND DISCUSSION

A choice of m is needed to implement the estimators of
Sections 2 and 3. We feel that exploration of the data vis-a-vis the
p-variate normal model is in many cases more useful since it leads to
a deeper understanding of the data generating process and the actual
problem at hand. Accordingly, it will often be useful to use a range
of values of m 1in our analyses since the responses of the parameter
estimates and final weights to changes in m generates very useful
diagnostics.

Table 1 gives the chemical analysis of 20 geological speci-
mens in terms of percentage of iron (Fe), sodium (Ma), and potassium
(K) which had been believed by geologists to be approximately homo-
geneous in character and also trivariate Gaussian. All two way scatter-
plots of this data are given in Figure 2. A few points visually "stick

out"

enough to question the belief of homogeneity and simple 3-variate
Gaussianity. It is of interest, however, to determine how the three
robust estimators of covariance react to this data for various values

of a .

Table 2 presents the estimates of the variances and correla-
2 2
tions for m = 10, 5, 2 and maximum likelihood. At =2 = 10 , all
estimates are reasonably close to those of maximum likelihood and at
2 2
m = 5 there are some zminor differences. However, at m" = 2 we find
that there are now i{mportant differences in the estimates. These dif-
ferences provide a warning that something may be awry regarding the

internal consistency of the data and the assumption of 3-variate normal-

ity. Of particular interest are the estimates of the correlation Tagy




Observation
Number

A

B

TABLE 1

2.1

1.3

2.2

1.3

1.6

3.1

2.8

4.0

2.6

1.5

3.9

3.1

3.1

CHEMISTRY OF GEOLOGICAL SPECIMENS

2.1

2.8

2.1

2.2

2.2

2.2

1.7

1.4

1.9

2.0

1.6

1.7

1.9

3.4
1.7
3.0
3.6
3.7
2.4
3.8
3.3
3.2
4.2

2.5
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FIGURE 2a. Percentages of iron and sodium for geological specimens.
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Geological Specimens

7.00

L T -
=
ol S b
)
3 R -
(=]
s l
' x | ]
== K
8] ‘- N P o
O H 0 :
: <ol f N g )
3 Q I
=3 J
('ﬂ. S D o
B L G -y
8
~ T ]
C
8. 1 I I [ 2 ] i i
71.20 1.60 2.00 2.40 2.80
Percent Na

FIGURE 2c¢. Percentages of sodium and potassium for gzeological specinens.
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TABLE 2

)

N
e

PARAMETER ESTIMATES FOR SEVERAL VALUES OF m

%.- _'

[+ 9
-

o>
fe
0>
-

Estimator Ei Fe Na K 12

13 23

Dl 10 0.653 0.151 1.26 -0.419 0.035 0.441

5"‘.
B A

5 0.651 0.152 1.30 -0.396 0.085 0.473

'$‘ vﬂ l\

2 1.19 0.166 0.633 -0.770 -0.133 -0.413

il -

NENEY

D2 10 0.659 0.143 1.16 -0.438 0.058 0.438

'
AR}

5 0.671 0.135 1.07 ~0.446 0.021 0.464

? .
g

\ 2 0.776 0.070 0.229 -0.824  -0.508 0.137

PN

D3 10 0.701 0.153 1.23 ~-0.439 0.059 0.436

v - ..
PP A
e SRR

v

‘ 5 0.722  0.144 1.14 -0.450 0.020 0.458

2 0.828 0.075 0.245 -0.828 -0.496 0.139

MLE 0.646 0.149 1,23 -0.435 0.089 0.416
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for the four estimators. Maximum likelihood perceives a relatively

strong positive correlation between Na and K , the estimators D,

~ -

and §3 perceives a relatively weak positive correlation between Né
and K , and the estimator @l perceives a relatively strong negative
correlation between Na and K . An examination of Figure lc leads
one to conclude that each interpretation is permissible, depending on
which data points are considered inconsistent with the remainder of
the data and the 3-variate Gaussianity. It should be emphasized that
a purely robust procedure which focused on 95% efficiency may not
have picked up a potential problem with the data-model unit while an
exploratory (sensitivity of solutions to changes in m ) analysis did.
0f course, for this 3-dimensional situation we can easlily see by
graphical methods that the data are not homogeneous and that there may
be some interesting geological structure which warrants further inves-
tigation. Since simple graphical methods may prove less effective in
higher dimensions, there is a real advantage to using these estimators
in combination with graphical methods for exploraticn and deeper under-~
standing of data and its generation.

The final weights V. = and W

i
1M AT

s Lie., v evaludted

, are useful in diagnostic examination of the data. Table

°\)
[
8
-
[ )}

"
X
N

3 presents the final observational weights for =" = 2 v for

~

L=1, 2 and z v
K$3 Jjkm

for 53 . All three estimation procedures

X Z

call attention to observations 18, 19, and 20 as being potentially
different from the remainder in the assumption of Guassianity. Methods

2 and 3 strongly indicate that observation 3 i{s potentiallv different

while the estimator 1 weaxlv indicates the potential difference. we do
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TABLE 3
FINAL OBSERVATIONAL WEIGHTS FOR m> = 2 .
Observation ———-—ZDI 2D2 203
Number m_ = 2 m- = 2 m = 2
1 0.058 0.061 0.059
2 0.069 0.078 0.074
3 0.038 0.005 0.011
4 0.068 0.069 0.066
5 0.062 0.067 0.064
6 0.065 0.073 0.070
7 0.051 0.033 0.034
8 0.067 0.069 0.066
9 0.054 0.052 0.051
10 0.068 0.077 0.074
11 0.060 0.062 0.059
12 0.049 0.048 0.047
13 0.067 0.073 0.070
14 0.056 0.055 0.055
15 0.067 0.075 0.072
16 0.060 0.067 0.064
17 0.042 0.036 0.038
18 0.6x1073 0.5%107" 0.007 -
19 0.1x107° 0.3x107° 0.010 g§§
20 1.1x1078 0.3x10" 0.010 :
o
Y
X
MY
X
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] not know which, 1if any, of the data points are reallv different, but
‘ we do want to know of the potential existence of such points since
this information is useful in evaluating our models and our knowledge

! of the phenomenon under examination.
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